Deploying a Smart Documentation Wiki with Azure AI Foundry and Private App Integration
- subrata sarkar
- Oct 1
- 3 min read
What You’re Building ?
You’ll be creating a Wiki Knowledge Hub that:
Stores technical and functional documentation in Blob Storage or SharePoint
Uses Azure AI Foundry to index, version, and retrieve content
Enables semantic search and generative Q&A using Azure AI Search
Optionally integrates with Copilot Studio or Power Pages for front-end access
Step-by-Step Implementation
1. Organize Documentation in Blob Storage or SharePoint
Option A: Azure Blob Storage
Create a Blob Storage account in Azure
Organize documents by project, module, or domain
Use folders for logical grouping (e.g., /Finance/FunctionalSpecs, /Tech/IntegrationDocs)
Supported formats: PDF, DOCX, TXT, CSV, Markdown
Option B: SharePoint
Create a SharePoint site for each project or domain
Upload documents into document libraries
Ensure metadata tagging (e.g., author, version, module) for better indexing
🔗 Reference: Introduction to Azure Blob Storage
2. Set Up Azure AI Foundry Hub-Based Project
Go to Azure Portal → Create a hub-based Azure AI Foundry project
Ensure you have an active Azure subscription
This hub will manage your data versions, lineage, and reproducibility
🔗 Reference: Create hub-based project in Azure AI Foundry
3. Add Data Sources to Azure AI Foundry
In Foundry, go to Data → Add New Data
Choose Blob Storage or SharePoint as source
Select type: folder, file, or table
Assign friendly names and version tags (e.g., FinanceSpecs_v1, TechDocs_2025Q3)
Foundry supports versioning, auditability, and lineage tracking
🔗 Reference: Manage data in Azure AI Foundry
4. Configure Azure AI Search for Semantic Indexing
Create an Azure AI Search service
Connect it to your Blob Storage or SharePoint container
Define index schema:
content (string, required)
title, tags, project, author, version (optional metadata)
Run the indexer and validate that documents are searchable
🔗 Reference: Set up Azure AI Search with Blob Storage
5. Enable Generative Q&A (Optional)
Use Azure OpenAI or Foundry Prompt Flow to build Q&A agents
Connect the indexed data source to your agent
Use embeddings and retrieval-augmented generation (RAG) for contextual answers
Deploy via Copilot Studio, Power Pages, or Teams
6. Document the Wiki Creation Process
To ensure plagiarism-free documentation:
Cite all Microsoft Learn and Azure Docs links used
Use paraphrased summaries with references
Include diagrams showing architecture (e.g., Blob → Foundry → Search → Q&A Agent)
Add version history and author attribution for each document
References
Azure AI Foundry: Add and manage data
Azure AI Search with Blob Storage
Azure AI Foundry GitHub Docs

Deploying the Wiki via a Private App
You can use Power Pages, Copilot Studio, or a custom web app to surface the Wiki. Here's how:
🔹 Option A: Power Pages (Low-Code Portal)
Create a Power Pages site
Go to Power Pages
Choose a template (e.g., Knowledge Base or Custom Portal)
Connect to Azure AI Search
Use REST API or embed a search component
Authenticate using Azure AD or API keys
Integrate Generative Q&A
Use Azure OpenAI or Prompt Flow to create a Q&A agent
Embed it via iframe or custom HTML component
Secure Access
Use role-based access control (RBAC)
Enable login via Microsoft Entra ID (formerly Azure AD)
🔹 Option B: Copilot Studio (Conversational Interface)
Create a Copilot in Copilot Studio
Go to Copilot Studio
Choose “Custom Copilot” and define intents like “Search Wiki”, “Ask about Finance Docs”
Connect to Azure AI Search and Foundry
Use Data Plugin to connect to indexed content
Use Generative Answers to enable semantic Q&A
Deploy to Teams, Web, or Mobile
Publish Copilot to Teams or embed in internal web apps
Use adaptive cards for rich responses
Security & Governance
Use Microsoft Entra ID for authentication
Enable audit logging in Azure AI Foundry
Apply data sensitivity labels in SharePoint or Blob metadata



Comments