top of page

Deploying a Smart Documentation Wiki with Azure AI Foundry and Private App Integration

  • Writer: subrata sarkar
    subrata sarkar
  • Oct 1
  • 3 min read

What You’re Building ?

You’ll be creating a Wiki Knowledge Hub that:

  • Stores technical and functional documentation in Blob Storage or SharePoint

  • Uses Azure AI Foundry to index, version, and retrieve content

  • Enables semantic search and generative Q&A using Azure AI Search

  • Optionally integrates with Copilot Studio or Power Pages for front-end access

Step-by-Step Implementation

1. Organize Documentation in Blob Storage or SharePoint

Option A: Azure Blob Storage

  • Create a Blob Storage account in Azure

  • Organize documents by project, module, or domain

  • Use folders for logical grouping (e.g., /Finance/FunctionalSpecs, /Tech/IntegrationDocs)

  • Supported formats: PDF, DOCX, TXT, CSV, Markdown

Option B: SharePoint

  • Create a SharePoint site for each project or domain

  • Upload documents into document libraries

  • Ensure metadata tagging (e.g., author, version, module) for better indexing

🔗 Reference: Introduction to Azure Blob Storage

2.  Set Up Azure AI Foundry Hub-Based Project

  • Go to Azure Portal → Create a hub-based Azure AI Foundry project

  • Ensure you have an active Azure subscription

  • This hub will manage your data versions, lineage, and reproducibility

🔗 Reference: Create hub-based project in Azure AI Foundry

3. Add Data Sources to Azure AI Foundry

  • In Foundry, go to Data → Add New Data

  • Choose Blob Storage or SharePoint as source

  • Select type: folder, file, or table

  • Assign friendly names and version tags (e.g., FinanceSpecs_v1, TechDocs_2025Q3)

  • Foundry supports versioning, auditability, and lineage tracking

🔗 Reference: Manage data in Azure AI Foundry

4. Configure Azure AI Search for Semantic Indexing

  • Create an Azure AI Search service

  • Connect it to your Blob Storage or SharePoint container

  • Define index schema:

    • content (string, required)

    • title, tags, project, author, version (optional metadata)

  • Run the indexer and validate that documents are searchable

🔗 Reference: Set up Azure AI Search with Blob Storage

5. Enable Generative Q&A (Optional)

  • Use Azure OpenAI or Foundry Prompt Flow to build Q&A agents

  • Connect the indexed data source to your agent

  • Use embeddings and retrieval-augmented generation (RAG) for contextual answers

  • Deploy via Copilot Studio, Power Pages, or Teams

6. Document the Wiki Creation Process

To ensure plagiarism-free documentation:

  • Cite all Microsoft Learn and Azure Docs links used

  • Use paraphrased summaries with references

  • Include diagrams showing architecture (e.g., Blob → Foundry → Search → Q&A Agent)

  • Add version history and author attribution for each document

References

  • Azure AI Foundry: Add and manage data

  • Azure AI Search with Blob Storage

  • Azure AI Foundry GitHub Docs


ree

 


Deploying the Wiki via a Private App

You can use Power Pages, Copilot Studio, or a custom web app to surface the Wiki. Here's how:

🔹 Option A: Power Pages (Low-Code Portal)

  1. Create a Power Pages site

    • Go to Power Pages

    • Choose a template (e.g., Knowledge Base or Custom Portal)

  2. Connect to Azure AI Search

    • Use REST API or embed a search component

    • Authenticate using Azure AD or API keys

  3. Integrate Generative Q&A

    • Use Azure OpenAI or Prompt Flow to create a Q&A agent

    • Embed it via iframe or custom HTML component

  4. Secure Access

    • Use role-based access control (RBAC)

    • Enable login via Microsoft Entra ID (formerly Azure AD)

🔹 Option B: Copilot Studio (Conversational Interface)

  1. Create a Copilot in Copilot Studio

    • Go to Copilot Studio

    • Choose “Custom Copilot” and define intents like “Search Wiki”, “Ask about Finance Docs”

  2. Connect to Azure AI Search and Foundry

    • Use Data Plugin to connect to indexed content

    • Use Generative Answers to enable semantic Q&A

  3. Deploy to Teams, Web, or Mobile

    • Publish Copilot to Teams or embed in internal web apps

    • Use adaptive cards for rich responses

Security & Governance

  • Use Microsoft Entra ID for authentication

  • Enable audit logging in Azure AI Foundry

  • Apply data sensitivity labels in SharePoint or Blob metadata

 

 
 
 

Comments


bottom of page